Nitrogen oxide and methane emissions under varying tillage and fertilizer management.

نویسندگان

  • Rodney T Venterea
  • Martin Burger
  • Kurt A Spokas
چکیده

Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we used chambers to measure N2O, CH4, and NO fluxes from plots that had been managed under differing tillage intensity since 1991. The effect of tillage on non-CO2 GHG emissions varied, in both magnitude and direction, depending on fertilizer practices. Emissions of N2O following broadcast urea (BU) application were higher under no till (NT) and conservation tillage (CsT) compared to conventional tillage (CT). In contrast, following anhydrous ammonia (AA) injection, N2O emissions were higher under CT and CsT compared to NT. Emissions following surface urea ammonium nitrate (UAN) application did not vary with tillage. Total growing season non-CO2 GHG emissions were equivalent to CO2 emissions of 0.15 to 1.9 Mg CO2 ha(-1) yr(-1) or 0.04 to 0.53 Mg soil-C ha(-1) yr(-1). Emissions of N2O from AA-amended plots were two to four times greater than UAN- and BU-amended plots. Total NO + N2O losses in the UAN treatment were approximately 50% lower than AA and BU. This study demonstrates that N2O emissions can represent a substantial component of the total GHG budget of reduced tillage systems, and that interactions between fertilizer and tillage practices can be important in controlling non-CO2 GHG emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anhydrous Ammonia Injection Depth Does Not Affect Nitrous Oxide Emissions in a Silt Loam over Two Growing Seasons.

Anhydrous ammonia (AA) is a major fertilizer source in North America that can promote greater emissions of nitrous oxide (NO) than other nitrogen (N) fertilizers. Previous studies found that injection of AA at a shallow depth (0.1 m) decreased NO in a rainfed clay loam but increased NO in an irrigated loamy sand compared with the standard injection depth of 0.2 m. The objective of this study wa...

متن کامل

Evaluation of Tillage, Nitrogen Fertilizer and Crop Residue Management on some Agronomic Traits of Soybean

This study setout to investigate the effect of wheat residue, tillage, and nitrogen fertilizer management on some agronomic traits of soybean as a split split plot based on randomized complete block design with three replications. The main plots included wheat residue management: collecting and leaving residue and sub plot included tillage (without tillage and conventional tillage), and the sub...

متن کامل

Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.

The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete...

متن کامل

Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

BACKGROUND Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS Measured data of methane (CH(4)) and nitrous oxide (N(2)O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2005